32 research outputs found

    Respiratory challenge MRI: practical aspects

    Get PDF
    Respiratory challenge MRI is the modification of arterial oxygen (PaO2) and/or carbon dioxide (PaCO2) concentration to induce a change in cerebral function or metabolism which is then measured by MRI. Alterations in arterial gas concentrations can lead to profound changes in cerebral haemodynamics which can be studied using a variety of MRI sequences. Whilst such experiments may provide a wealth of information, conducting them can be complex and challenging. In this paper we review the rationale for respiratory challenge MRI including the effects of oxygen and carbon dioxide on the cerebral circulation. We also discuss the planning, equipment, monitoring and techniques that have been used to undertake these experiments. We finally propose some recommendations in this evolving area for conducting these experiments to enhance data quality and comparison between techniques

    Oxygen challenge MRI: development of a novel technique and application to acute stroke patients

    Get PDF
    The treatment of hyperacute ischaemic stroke has been revolutionised by the concept of potentially salvageable tissue – the ‘ischaemic penumbra’. However, current therapeutic practice is to administer thrombolytic therapy with recombinant tissue plasminogen activator after exclusion of intra-cerebral haemorrhage, with ‘time since onset’ used as a surrogate marker for the presence or absence of the ischaemic penumbra. The ability to identify the penumbra on an individual basis would enable bespoke treatment plans on the basis of underlying pathophysiology. The most commonly employed penumbral image technique is multi-modal magnetic resonance imaging (MRI) to identify a region of perfusion-diffusion mismatch. However, this approach remains to be validated. Moreover, a systematic review presented as an appendix to this thesis highlights the marked heterogeneity for its application. This thesis focusses on the development of a novel MRI technique (Oxygen Challenge) and is the first to report findings from human acute ischaemic stroke. The rationale for this technique is that it is sensitive to deoxyhaemoglobin, which is produced as a consequence of oxidative metabolism. It therefore has the potential to discriminate tissue compartments based on metabolic activity. For this study, 35 subjects with acute ischaemic stroke were imaged with transient hyperoxia (Oxygen Challenge) applied during continuous T2*-weighted MRI. Exploratory analyses suggested the following; •Oxygen Challenge precipitates a T2*-weighted signal increase in healthy tissue •This signal increase is partly dependent on the underlying cerebral blood volume, as suggested by univariate and multivariate analyses •In general, higher concentrations of oxygen precipitate greater T2*-weighted signal increases, but oxygen may influence T2*-weighted signal intensity in a bi-modal manner •The signal changes in operationally defined infarct core are attenuated, suggesting a metabolic influence on Oxygen Challenge results •Signal increases in the hyperacute perfusion-diffusion mismatch region were sometimes exaggerated, consistent with increased oxygen extraction fraction. However, small volumes of tissue acquired from only a few subjects limited definitive conclusions in this study •Oxygen Challenge may detect regions of crossed cerebellar diaschsis, although further confirmation is required •Maps of ‘percentage signal change’ allowed rapid evaluation of whole brain Oxygen Challenge data •Improvements in signal-to-noise ratio are required before this technique can be applied in clinical practice. On the basis of these data it is concluded that the technique is encouraging and further validation is warranted

    Oxygen challenge magnetic resonance imaging in healthy human volunteers

    Get PDF
    Oxygen challenge imaging involves transient hyperoxia applied during deoxyhaemoglobin sensitive (T2*-weighted) magnetic resonance imaging and has the potential to detect changes in brain oxygen extraction. In order to develop optimal practical protocols for oxygen challenge imaging, we investigated the influence of oxygen concentration, cerebral blood flow change, pattern of oxygen administration and field strength on T2*-weighted signal. Eight healthy volunteers underwent multi-parametric magnetic resonance imaging including oxygen challenge imaging and arterial spin labelling using two oxygen concentrations (target FiO2 of 100 and 60%) administered consecutively (two-stage challenge) at both 1.5T and 3T. There was a greater signal increase in grey matter compared to white matter during oxygen challenge (p < 0.002 at 3T, P < 0.0001 at 1.5T) and at FiO2 = 100% compared to FiO2 = 60% in grey matter at both field strengths (p < 0.02) and in white matter at 3T only (p = 0.0314). Differences in the magnitude of signal change between 1.5T and 3T did not reach statistical significance. Reduction of T2*-weighted signal to below baseline, after hyperoxia withdrawal, confounded interpretation of two-stage oxygen challenge imaging. Reductions in cerebral blood flow did not obscure the T2*-weighted signal increases. In conclusion, the optimal protocol for further study should utilise target FiO2 = 100% during a single oxygen challenge. Imaging at both 1.5T and 3T is clinically feasible

    Xanthine oxidase inhibition for the improvement of long-term outcomes following ischaemic stroke and transient ischaemic attack (XILO-FIST) - Protocol for a randomised double blind placebo-controlled clinical trial

    Get PDF
    Background: Allopurinol, a xanthine oxidase inhibitor, reduced progression of carotid-intima media thickness and lowered blood pressure in a small clinical trial in people with ischaemic stroke. Xanthine oxidase inhibition for improvement of long-term outcomes following ischaemic stroke and transient ischaemic attack (XILO-FIST) aims to assess the effect of allopurinol treatment on white matter hyperintensity progression and blood pressure after stroke. This paper describes the XILO-FIST protocol. Methods: XILO-FIST is a multicentre randomised double-blind, placebo-controlled, parallel group clinical trial funded by the British Heart Foundation and the Stroke Association. The trial has been adopted by the Scottish Stroke Research Network and the UK Clinical Research Network. The trial is registered in clinicaltrials.gov (registration number NCT02122718). XILO-FIST will randomise 464 participants, aged greater than 50 years, with ischaemic stroke within the past month, on a 1:1 basis, to two years treatment with allopurinol 300 mg twice daily or placebo. Participants will undergo brain magnetic resonance imaging, cognitive assessment, ambulatory blood pressure monitoring and blood sampling at baseline and after two years treatment. The primary outcome will be white matter hyperintensity progression, measured using the Rotterdam progression scale. Secondary outcomes will include change in white matter hyperintensity volume, mean day-time systolic blood pressure and measures of cognitive function. Up to 100 will undergo additional cardiac magnetic resonance imaging in a sub-study of left ventricular mass. Discussion: If white matter hyperintensity progression is reduced, allopurinol could be an effective preventative treatment for patients with ischaemic stroke and clinical endpoint studies would be needed. If allopurinol reduces blood pressure after stroke, then it could be used to help patients reach blood pressure targets

    Directly photoexcited Dirac and Weyl fermions in ZrSiS and NbAs

    Get PDF
    We report ultrafast optical measurements of the Dirac line-node semimetal ZrSiS and the Weyl semimetal NbAs, using mid-infrared pump photons from 86 meV to 500 meV to directly excite Dirac and Weyl fermions within the linearly dispersing bands. In NbAs, the photoexcited Weyl fermions initially form a non-thermal distribution, signified by a brief spike in the differential reflectivity whose sign is controlled by the relative energy of the pump and probe photons. In ZrSiS, electron-electron scattering rapidly thermalizes the electrons, and the spike is not observed. Subsequently, hot carriers in both materials cool within a few picoseconds. This cooling, as seen in the two materials’ differential reflectivity, differs in sign, shape, and timescale. Nonetheless, we find that it may be described in a simple model of thermal electrons, without free parameters. The electronic cooling in ZrSiS is particularly fast, which may make the material useful for optoelectronic applications

    Catheter-Based Renal Sympathetic Denervation for Resistant Hypertension Durability of Blood Pressure Reduction Out to 24 Months

    Get PDF
    Renal sympathetic hyperactivity is seminal in the maintenance and progression of hypertension. Catheter-based renal sympathetic denervation has been shown to significantly reduce blood pressure (BP) in patients with hypertension. Durability of effect beyond 1 year using this novel technique has never been reported. A cohort of 45 patients with resistant hypertension (systolic BP GT = 160 mm Hg on GT = 3 antihypertension drugs, including a diuretic) has been originally published. Herein, we report longer-term follow-up data on these and a larger group of similar patients subsequently treated with catheter-based renal denervation in a nonrandomized manner. We treated 153 patients with catheter-based renal sympathetic denervation at 19 centers in Australia, Europe, and the United States. Mean age was 57 +/- 11 years, 39% were women, 31% were diabetic, and 22% had coronary artery disease. Baseline values included mean office BP of 176/98 +/- 17/15 mm Hg, mean of 5 antihypertension medications, and an estimated glomerular filtration rate of 83 +/- 20 mL/min per 1.73 m(2). The median time from first to last radiofrequency energy ablation was 38 minutes. The procedure was without complication in 97% of patients (149 of 153). The 4 acute procedural complications included 3 groin pseudoaneurysms and 1 renal artery dissection, all managed without further sequelae. Postprocedure office BPs were reduced by 20/10, 24/11, 25/11, 23/11, 26/14, and 32/14 mm Hg at 1, 3, 6, 12, 18, and 24 months, respectively. In conclusion, in patients with resistant hypertension, catheter-based renal sympathetic denervation results in a substantial reduction in BP sustained out to GT = 2 years of follow-up, without significant adverse events. (Hypertension. 2011;57:911-917.

    Cerebral microbleeds and intracranial haemorrhage risk in patients anticoagulated for atrial fibrillation after acute ischaemic stroke or transient ischaemic attack (CROMIS-2):a multicentre observational cohort study

    Get PDF
    Background: Cerebral microbleeds are a potential neuroimaging biomarker of cerebral small vessel diseases that are prone to intracranial bleeding. We aimed to determine whether presence of cerebral microbleeds can identify patients at high risk of symptomatic intracranial haemorrhage when anticoagulated for atrial fibrillation after recent ischaemic stroke or transient ischaemic attack. Methods: Our observational, multicentre, prospective inception cohort study recruited adults aged 18 years or older from 79 hospitals in the UK and one in the Netherlands with atrial fibrillation and recent acute ischaemic stroke or transient ischaemic attack, treated with a vitamin K antagonist or direct oral anticoagulant, and followed up for 24 months using general practitioner and patient postal questionnaires, telephone interviews, hospital visits, and National Health Service digital data on hospital admissions or death. We excluded patients if they could not undergo MRI, had a definite contraindication to anticoagulation, or had previously received therapeutic anticoagulation. The primary outcome was symptomatic intracranial haemorrhage occurring at any time before the final follow-up at 24 months. The log-rank test was used to compare rates of intracranial haemorrhage between those with and without cerebral microbleeds. We developed two prediction models using Cox regression: first, including all predictors associated with intracranial haemorrhage at the 20% level in univariable analysis; and second, including cerebral microbleed presence and HAS-BLED score. We then compared these with the HAS-BLED score alone. This study is registered with ClinicalTrials.gov, number NCT02513316. Findings: Between Aug 4, 2011, and July 31, 2015, we recruited 1490 participants of whom follow-up data were available for 1447 (97%), over a mean period of 850 days (SD 373; 3366 patient-years). The symptomatic intracranial haemorrhage rate in patients with cerebral microbleeds was 9·8 per 1000 patient-years (95% CI 4·0–20·3) compared with 2·6 per 1000 patient-years (95% CI 1·1–5·4) in those without cerebral microbleeds (adjusted hazard ratio 3·67, 95% CI 1·27–10·60). Compared with the HAS-BLED score alone (C-index 0·41, 95% CI 0·29–0·53), models including cerebral microbleeds and HAS-BLED (0·66, 0·53–0·80) and cerebral microbleeds, diabetes, anticoagulant type, and HAS-BLED (0·74, 0·60–0·88) predicted symptomatic intracranial haemorrhage significantly better (difference in C-index 0·25, 95% CI 0·07–0·43, p=0·0065; and 0·33, 0·14–0·51, p=0·00059, respectively). Interpretation: In patients with atrial fibrillation anticoagulated after recent ischaemic stroke or transient ischaemic attack, cerebral microbleed presence is independently associated with symptomatic intracranial haemorrhage risk and could be used to inform anticoagulation decisions. Large-scale collaborative observational cohort analyses are needed to refine and validate intracranial haemorrhage risk scores incorporating cerebral microbleeds to identify patients at risk of net harm from oral anticoagulation. Funding: The Stroke Association and the British Heart Foundation

    Detection of ischemic penumbra using combined perfusion and T2* oxygen challenge imaging

    Get PDF
    Acute ischemic stroke is common and disabling, but there remains a paucity of acute treatment options and available treatment (thrombolysis) is underutilized. Advanced brain imaging, designed to identify viable hypoperfused tissue (penumbra), could target treatment to a wider population. Existing magnetic resonance imaging and computed tomography-based technologies are not widely used pending validation in ongoing clinical trials. T2* oxygen challenge magnetic resonance imaging, by providing a more direct readout of tissue viability, has the potential to identify more patients likely to benefit from thrombolysis - irrespective of time from stroke onset - and patients within and beyond the 4·5 h thrombolysis treatment window who are unlikely to benefit and are at an increased risk of hemorrhage. This study employs serial multimodal imaging and voxel-based analysis to develop optimal data processing for T2* oxygen challenge penumbra assessment. Tissue in the ischemic hemisphere is compartmentalized into penumbra, ischemic core, or normal using T2* oxygen challenge (single threshold) or T2* oxygen challenge plus cerebral blood flow (dual threshold) data. Penumbra defined by perfusion imaging/apparent diffusion coefficient mismatch (dual threshold) is included for comparison.  Permanent middle cerebral artery occlusion was induced in male Sprague-Dawley rats (n = 6) prior to serial multimodal imaging: T2* oxygen challenge, diffusion-weighted and perfusion imaging (cerebral blood flow using arterial spin labeling).  Across the different methods evaluated, T2* oxygen challenge combined with perfusion imaging most closely predicted 24 h infarct volume. Penumbra volume declined from one to four-hours post-stroke: mean ± SD, 77 ± 44 to 49 ± 37 mm(3) (single T2* oxygen challenge-based threshold); 55 ± 41 to 37 ± 12 mm(3) (dual T2* oxygen challenge/cerebral blood flow); 84 ± 64 to 42 ± 18 mm(3) (dual cerebral blood flow/apparent diffusion coefficient), as ischemic core grew: 155 ± 37 to 211 ± 36 mm(3) (single apparent diffusion coefficient threshold); 178 ± 56 to 205 ± 33 mm(3) (dual T2* oxygen challenge/cerebral blood flow); 139 ± 30 to 168 ± 38 mm(3) (dual cerebral blood flow/apparent diffusion coefficient). There was evidence of further lesion growth beyond four-hours (T2-defined edema-corrected infarct, 231 ± 19 mm(3) ).  In conclusion, T2* oxygen challenge combined with perfusion imaging has advantages over alternative magnetic resonance imaging techniques for penumbra detection by providing serial assessment of available penumbra based on tissue viability
    corecore